
 

 

  

Abstract— We investigate the mathematical properties of 
rotating exponentially stratified fluid for bounded three-dimensional 

domains, such as existence and uniqueness of the solutions, the 

structure of the spectrum of normal vibrations, the relationship 

between the essential spectrum and non-uniqueness of the solutions, 

etc. We consider the both cases of viscous and inviscid fluid, as well 

as compressible and uncompressible cases. For various boundary 

problems of viscous barotropic fluid, we prove that the essential 

spectrum consists of isolated real points. For inviscid fluid, we prove 

that the essential spectrum is an interval of the imaginary axis which 

is symmetrical with respect to zero. Since the considered model of 

the stratified fluid corresponds to a distribution of the initial density 

in a homogeneous gravitational field, the obtained results may find 

their application in the models of the Atmosphere and the Ocean 

which consider the rotation of the Earth over the vertical axis. The 

novelty of this research is to consider simultaneously the effects of 

rotation and stratification, which has been studied separately in 

previous works. Three different techniques are used to localize and 

investigate the spectrum: the theory of the operator bundles, the 

verification of ellipticity in sense of Douglis-Nirenberg and the 

Lopatinski conditions, and the construction of the explicit Weyl 

sequence for the essential spectrum, which is our main result. 

 

Keywords— Essential spectrum, partial differential equations, 
Sobolev spaces, stratified fluid, rotational fluid. 

I. INTRODUCTION 

ET us consider a bounded domain 3RΩ ⊂  with the 

boundary ∂Ω  of the class 1C and the following system of 

fluid dynamics 
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Here ( )1 2 3
, ,u u u u=

�
 is a velocity field, ( , )p x t  is the scalar 

field of the dynamic pressure and  ( , )x tρ  is the dynamic 

density. In this model, the stationary distribution of density is 

described by the function 3Nx
e

−
, so N is a positive constant.       

For the compressibility coefficient α , the kinematic viscosity 
coefficient ν , and the volume (bulk) viscosity coefficient β  
we assume 0 , 0 , 0α ν β> > ≥ .  

We also suppose that ω is a positive constant so that the 

system (1)  describes linear motions of compressible stratified 

barotropic viscous fluid which is rotating over the vertical axis 

with a constant angular velocity ( )0,0,ω ω=
�

. 

We consider as well the inviscid case of the model described 

by (1): 
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For inviscid case, the equations (1) are deduced in [1]-[3].  For 

viscous compressible fluid, the system (1) is deduced, for 

example, in [4].  

May we observe that, despite an extensive study of stratified 

flows from the physical point of view (see, for example, [5]-
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[10]), there have been relatively few works considering the 

mathematical aspect of the problem.  

The fundamental solution of internal waves in incompressible 

stratified flows was first constructed in [11]. 

The mathematical properties of rotational inviscid fluid were 

studied in various works of S. Sobolev, starting from the 

famous paper [12]. 

The studying of qualitative properties of solutions of PDE 

systems modeling rotational compressible flows was started by 

V. Maslennikova in [13] and was developed later in her future 

works. 

The solutions for a Cauchy problem for the homogeneous 

system (1) with 0ω = , for the viscous case of intrusion for 

homogeneous system were constructed in [14], and the 

uniqueness of the homogeneous Cauchy problem for the 

viscous case was studied in [15]. For the inviscid 

incompressible case, the spectral properties of the differential 

operator of (1) with 0ω =  were considered in [16]-[19], and 

the case of inviscid compressible fluid was first considered in 

[20]. Particularly, for 0  and  0ν β= = , for the case of non-

rotational compressible fluid ( 0α > ), in [20] it was proved 

that the essential spectrum of operator of normal vibrations is 

the interval of the imaginary axis [ ],iN iN− .  

For non-compressible inviscid stratified fluid ( 0α β ν= = = ), 

in [16], [17], [19] it was proved that the essential spectrum is 

the same interval of the imaginary axis [ ],iN iN− , outside of 

which there can be only the eigenvalues of finite multiplicity.  

For rotational inviscid fluid, the corresponding result 

( [ , ]i iω ω− ) was proved in [21], [27]. 

However, the case of the viscous compressible barotropic fluid 

has not been considered previously. Neither has been 

considered the case of rotating stratified (either inviscid or 

viscous, compressible or non-compressible) fluid. The novelty 

of these problems, the explicit relationship between the 

parameters of rotation and stratification in the description of 

the spectral properties and their possible applications to the 

dynamics of the Atmosphere and the Ocean was the motivation 

of this paper, some partial results of which were reported in 

[28], [29]. 

II.  STATEMENT OF THE PROBLEM AND PRELIMINARIES 

 

Let us consider first the system  (2) with 0α = and the 

boundary condition 

                                 0u n
∂Ω

⋅ =
� �

.                                     (3) 

Let us define the following functional spaces: 

( ) ( ) ( ) ( ) ( ){ }1

2 2 2: ,  G u x L u x Wϕ ϕΩ = ∈ Ω = ∇ ∈ Ω
� �

, 

( ) ( ) ( ){ }1

0 : ,  div 0,  0J u x u C u u n
∂Ω

Ω = ∈ Ω = ⋅ =
� � � � �

, 

and let ( )2
J Ω  be a closure of  ( )0

J Ω  in the norm of ( )2
L Ω . 

In what follows in this section, we will use the techniques and 

ideas which were first introduced by S. Sobolev in [12]. 

It is proved in [30] that there is valid the decomposition 

( ) ( ) ( )2 2 2
L J GΩ = Ω ⊕ Ω . 

 Now, if we denote ( )3 , 0,0,1
p

q e
t

∂
= =

∂
�

 and use the above 

decomposition for ( )2
L Ω , we can exclude the unknown 

function ρ  from (2) and thus write the system (2) with 0α =  

in the following way. 
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Now, let us denote as P  the operator of orthogonal projection 

of ( )2
L Ω  onto ( )2

J Ω  and let us consider the following ope-

rators: 

[ ]3
,Ku P e u=

� � �
 ,  { }3 3

Lu P u e=
� �

. 

In this way, if we consider the initial conditions  

                     ( ) ( ) ( ) ( )0 1,0  ,   ,0
u

u x u x x u x
t

∂
= =

∂

�
� � �

 ,           (5) 

then we can reduce the problem (4), (5) to the following 

abstract differential equation for the linear operators K, L: 
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2
2
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, ,

u u
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∂ ∂
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� � �
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It is easy to see that 1K L= = . 

In addition, we observe that for ( )2
,u v J∈ Ω
� �

 the relations 

hold: 

( ) ( ) ( ) ( )2 2

, ,
L L

u iKv iKu v
Ω Ω

=
� � � �

,    ( ) ( ) ( ) ( )2 2

, ,
L L

u Lv Lu v
Ω Ω

=
� � � �

, 

from which we can easily conclude that the operators iK and L 

are self-adjoint operators in ( )2
J Ω . Thus, from [31], [32] we 

have that the following Theorem is valid: 

 

Theorem 1. 

If ( )0 1 2
,u u J∈ Ω
� �

 then there exists a unique solution of the 

problem (3)-(5) such that ( ) [ ) ( )2
, 0,u t x C J∞∈ ∞ × Ω

�
. 

 

Let us consider the problem of what is called normal 

oscillations of considered fluid in the domain Ω , in other 
terms, we would like to consider the particular solutions of (6) 

which are represented by the form 

( ) { }expu v x i tλ=
� �

, 

where ( ) ( )2
v x J∈ Ω
�

 and  he value ( )v x
�

 is defined as a 

solution of the equation 
2 2v i Kv N Lvλ λ ω= +
� � �

. 

If we denote as ( )B λ  the following quadratic bundle of 

operators 

                       ( ) 2 2B I i K N Lλ λ λω= − − ,                        (7) 

then the problem of the spectrum of normal oscillations in 

( )2
L Ω can be considered as the problem of the spectrum for 

the quadratic bundle of operators 
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                                         ( ) 0B vλ =
�

                               (8) 

in the functional space ( )2
J Ω . 

(We recall that the spectrum of the bundle of operators 

( ) 0B vλ = , v H∈ , is a set of all λ such that for the operator 

( )B λ there is no bounded inverse operator in H). 

 

Property 1. 

The point 0λ =  is an eigenvalue of infinite multiplicity of the 

bundle (7). The corresponding eigenfunctions are the elements 

( ) ( )2
v x J∈ Ω
�

 such that ( )1 2
, ,0v v v=

�
. 

 

Proof.      

For 0λ =  we have that the solutions of the equation  

( )0 0B v =
�

 coincide with the kernel of the operator L in 

( )2
J Ω . From the definition of the operator L it follows 

immediately that its kernel is the subspace of  ( )2
J Ω  with 

trivial third component and thus the Property is proved. 

Now, for 0λ ≠  we can write the bundle (7) as follows. 

                         
2

2

1 N
v i Kv Lvω

λ λ
= +
� � �

.                               (9) 

To localize the spectrum of (9), we consider  the elements 

{ } ( ) ( )2 2
,z v w H J J= ∈ = Ω ⊕ Ω
� �

, 

where ( )
1
2w N L vλ=

� �
, being 

1
2L  a square root of  L  and 

thus a bounded and self-adjoint  operator in ( )2
J Ω .  Now, if 

we introduce the matrix operator 
1
2

1
2 0

i K NL
T

NL

ω 
 =
  

, 

then we obtain that the bundle (9) acting in ( )2
J Ω  has its 

equivalent matrix form 

                                          z Tzλ =                                   (10) 

for the matrix operator T acting in ( ) ( )2 2
H J J= Ω ⊕ Ω .  

It is easy to see that, for 0λ ≠ , the spectrum of the bundle (7) 

coincides with the spectrum of the operator T.  

Let us observe that the spectrum of the bundle (7) is real and 

symmetrical with respect to the origin. Since the operator of 

complex conjugation (we denote it as ( )∗
), is an involution 

operator in ( )2
J Ω (see[33]), then, from the evident identity 

( ) ( )( ) ( )1 1

0 0 2,   B f B f f Jλ λ
∗− − ∗= − ∈ Ω  

we obtain that the existence of a bounded inverse operator for 

( )0B λ  implies the existence of a bounded inverse operator for 

( )0B λ− , and vice versa.  

The fact that the spectrum is real is a consequence of the self-

adjointness of the operators K, L. 

Evidently, the upper limit of the spectrum of a bounded self-

adjoint operator T is: 

( )sup ,
H

H
z

M z Tz= . 

Let us estimate the value M . We have 

( ) ( ) ( ) ( )
2

2 2

1 1
2 2, , , ,

H L
L L

z Tz v iKv N v L w N w L vω= + +
� � � � � �

, 

where 

( ) ( ) ( )
2 2 2

222 2

1 2 1 2 1 2 3
,

L L L
v iKv v v v v dx v v dx v v

Ω Ω

= − ≤ + = −∫ ∫
� � �

, 

( ) ( ) ( )
2 2 2

2 22
2

1 1 1
2 2 2

2
1 22 2
2

3

, , 2 Re ,
L L L

L LL
L

v L w w L v L v w

L v w v w

+ = ≤

≤ + ≤ +

� � � � � �

� � �
 , 

from which we finally obtain 

( ) ( )
2 2 2

22 2

3
,

H L L L
z Tz v N w N vω ω≤ + + −

� �
. 

Since 
2 2

2 2 2

H L L
z v w= +

� �
 and  

22

2 2

3 LL
v v≤

�
,  then we finally 

have 

                            { }max ,M N Aω≤ = .                          (11) 

Let us resume the obtained results as the following 

Property 2. 

The spectrum of normal oscillations for inviscid 

uncompressible rotating stratified fluid, defined as the 

spectrum of quadratic bundle (7) in ( )2
J Ω , belongs to the 

interval of the real axis [ ],A A− . Moreover, it is symmetrical 

with respect to the point 0λ = , which is an eigenvalue of 

infinite multiplicity. 

 

Remark 1. 

 

In the proof of Property 2, we used the separation of 

varianbles  ( ) { }expu v x i tλ=
� �

. If, instead of that, we use the 

separation  of variables in the form ( ) { }exp ,  u v x t Cλ λ= ∈
� �

, 

then the result of Property 2 will be the interval of the 

imaginary axis [ ],iA iA− . 

Now, let us consider the system (2) with 0α ≠  and the 

boundary condition 

                                0u n
∂Ω

⋅ =
� �

 .                             (12) 

We consider the following problem of normal oscillations 

                      

( ) ( )
( ) ( )

( ) ( )

4

5

,

,

1
,      ,   .

t

t

t

u x t v x e

x t Nv x e

p x t v x e C

λ

λ

λ

ρ

λ
α

−

−

−

=

=

= ∈

� �

              (13) 

We denote ( )4 5
, ,v v v v=
�

ɶ  and write (2)  as 

                                        0Lv =ɶ                                     (14) 

where L M Iλ= −  and        
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Let us denote as 1M  the differential operator (15) 

corresponding to the boundary conditions (12). 

We define the domain of the differential operator 1M  as 

follows.  

( )( ) ( )
( ) ( ) ( )

( ) ( )
3

2 21 1 1

2 2
1

2

 :
( ) .

, ,  

v L f L
D M W W

v f Wϕ ϕ ϕ

 ∈ Ω ∃ ∈ Ω 
= × Ω × Ω 

∇ = ∀ ∈ Ω  

�

�
 

On the other hand, we will consider the system (1) with the 

boundary  conditions 

                                 0u
∂Ω

=
�

                                         (16) 

or 

                            
3

1

0  ,   1,2,3,
ij j

j

T n i
= ∂Ω

= =∑                   (17) 

where the components of the stress tensor ijT  are expressed by 

( )1 div ji
ij ij ij

j i

uu
T u p

x x
δ ν β ν δ

 ∂∂
= − + + −  ∂ ∂ 

�
 

and 
j

n  are the components of the exterior normal n
�
 to the 

surface ∂Ω .  
For the system (1) we also apply the separation of variables  

(13), (14) , and thus the matrix M will take the form      
2 2 2

2

1 1 2 1 3 1

2 2 2

2

1 2 2 2 3 2

2 2 2

2

1 3 2 3 3 3

1

1
0

1
0

1

        0              0                     0     0    

1
       

x x x x x x
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M
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x x x x x x

N

x

ν νβ νβ ω νβ
α

νβ ω ν νβ νβ
α

νβ νβ ν νβ
α

α

∂ ∂ ∂ ∂
− ∆− − − −

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
− + − ∆− −

∂ ∂ ∂ ∂ ∂ ∂

= ∂ ∂ ∂ ∂
− − − ∆−

∂ ∂ ∂ ∂ ∂ ∂

−

∂
∂ 2 3

1 1
                 0     0  

x xα α

 
 
 
 
 
 
 
 
 
 
 
 ∂ ∂
 ∂ ∂ 

  (18) 

Let us denote as 2M  the differential operator (18) with the 

boundary conditions (16), and, respectively, let 3M  be the 

operator (18) associated with the boundary conditions (17). 

We define the domains of these differential operators as 

follows.  

( ) ( ) ( )

( )( )

3
0
1

2 4 2 5 22

5

2

, , :
( ) ,

v W v L v L
D M

Mv L

  
∈ Ω ∈ Ω ∈ Ω   

=   
 

∈ Ω  

�

ɶ
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2 4 2 5 2
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j

v W v L v L

D M

Mv L T n
∂Ω

=

  
∈ Ω ∈ Ω ∈ Ω    =  

 ∈ Ω =  
∑

�

ɶ

 

where  ( )
0
1

2
W Ω  is a closure of the functional space ( )0

C
∞ Ω  in 

the norm of ( )1

2
W Ω . 

From the physical point of view, the separation of variables 

(13) serves as a tool to establish the possibility to represent 

every non-stationary process described by (1) or (2), as a 

linear superposition of the normal vibrations. The knowledge 

of the spectrum of normal vibrations may be very useful for 

studying the stability of the flows. Also, the spectrum of 

operators 
1 2 3
,  , M M M is important in the investigation of 

weakly non-linear flows, since the bifurcation points where the 

small non-linear solutions arise, belong to the spectrum of 

linear normal vibrations, i.e., to the spectrum of operators 
1 2 3
,  , M M M . 

In this paper we study first the spectrum of operators 
1 2 3
,  , M M M .  

As we have seen in Theorem 1 and Property 2, for the spectral 

study of the incompressible case of the operator 1M , the 

theory of operator bundles could be used. For compressible 

case of operator 1M , as well as for the operators 
2 3
, M M , we 

will use a different technique, which is based on the concepts 

of ellipticity in sense of Douglis-Nirenberg and Lopatinski 

conditions.  

For the operator 1M , additionally, we will prove the property 

of skew-selfadjointness and construct the explicit Weyl 

sequence for the essential spectrum. We will find the essential 

spectrum of the operators 
2 3
, M M  and localize the sector of 

the complex plane to which all the eigenvalues belong. 

Finally, we will compare the obtained spectral results for 

stratified rotating fluid with the previous analogous results 

considering separately the cases of rotation and stratification, 

either for viscous or for inviscid fluid. 

We observe first that the operators 
1 2 3
,  , M M M are closed 

operators, and their domains are dense in ( )( )52L Ω . 

Let us denote by ( )ess
Mσ  the essential spectrum of a closed 

linear operator M. We recall that the essential spectrum  

( ) ( ){ }: is not of Fredholm type ,
ess

M C M Iσ λ λ= ∈ −  

is composed of the points belonging to the continuous 

spectrum, limit points of the point spectrum and the 

eigenvalues of infinite multiplicity (see [22] ,[23]).  

In this way, every spectral point which does not belong to the 

essential spectrum, is an eigenvalue of finite multiplicity.  

To find the essential spectrum of the operator M , we will use 

the following property (see [24]): 

( )ess
M Q Sσ = ∪ , 

where 
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( ): is not elliptic 

in sense of Douglis-Nirenberg

C M I
Q

λ λ∈ − 
=  

 
 

and 

( )\ : the boundary conditions of 
.

do not satisfy Lopatinski conditions

C Q M I
S

λ λ∈ − 
=  

 
 

For the ellipticity in sense of Douglis-Nirenberg, we will use 

the definition from [25].  For the Lopatinski conditions, we 

will use the definition from  [24]. Since it is less widely 

known, we recall it hereafter.  

Definition 1.   

Let us consider ( ) ( ) ( )1 2 3 1 2
, , ,   , ,  Lξ ξ ξ ξ ξ ξ ξ ξ∗= =ɶ  - the 

matrix of the algebraic complements of the main symbol 

matrix ( )L ξɶ ,  ( )G ξ  is the main symbol of the matrix G(D) 

which defines the boundary conditions, 

( ) ( )( ),
j

M ξ τ τ τ ξ+ = −∏ɶ ɶ ,  ( )jτ ξɶ  are the roots of the 

equation ( )det , 0L ξ τ =ɶɶ  with positive imaginary part.  

If the rows of the matrix ( ) ( )ˆ, ,G Lξ τ ξ τɶ ɶ  are linearly 

independent with respect to the module 

( ),M ξ τ+ ɶ  for 0ξ ≠ɶ , then we will say that the conditions of 

Lopatinski are satisfied (see [24]). 

We also will use the following criterion which is attributed to 

Weyl ([22],[23]): a necessary and sufficient condition that a 

real finite value λ  be a point of the essential spectrum of a 
self-adjoint operator M  is that there exist a sequence of 

elements ( )n
v D M∈  such that 

           ( )1 ,   0 ,   0 .n n nv v M I vλ= − →⇀                 (19) 

III. THE SOLUTION OF THE PROBLEM FOR THE CASE OF 

INVISCID COMPRESSIBLE ROTATING STRATIFIED FLUID 

 

Theorem 2.  

The operator 1M  is skew-selfadjoint. 

 

Proof. 

We observe that 1M  can be represented as  

                         
1 0

,
N

M M B Bω= + +                          (20) 

where 

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

 ,   .0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

N
B B N

N

ω

ω
ω

−   
   
   
   = =
   

−   
   
   

 

Since , 
N

B Bω  are anti-symmetric bounded operators, then it is 

sufficient to prove the skew-selfadjointness for the operator 

0
M  with the domain 

( ) ( )10 .D M D M=  

Let ( )0,u v D M∈ɶ ɶ . Integrating by parts, we obtain 

( ) ( )0 0
, ,M u v u M v= −ɶ ɶ ɶ ɶ . 

Now, let ( )*0v D M∈ɶ . Thus, ( )2
v L∈ Ωɶ  and there exists 

( )2
f L∈ Ωɶ  such that 

( ) ( ) ( )0 0, ,   for all M u v u f u D M= ∈ɶɶ ɶ ɶ ɶ . 

Take ( )1

5 5 2
(0,0,0,0, ) ,  u u u W= ∈ Ωɶ . Then, we will have 

( ) ( )5 5 5
, ,u v u f∇ =
�

. 

For ( )1 2 3
, , ,0,0u u u u=ɶ  we obtain 

( ) ( )5
 , ,div u v u f=

�� �
. 

From the last two relations we conclude that 
5
v  has a weak 

gradient from ( )2
L Ω  and ( )1

5 2
.v W∈ Ω  

Since 
0

M  is not acting on the fourth component of the vector 

uɶ , we may consider 
4 4 4

0.u v f= = =  

In this way, we have verified that 

( ) ( )*

0 0 .D M D M⊂  

The reciprocal inclusion can be proved analogously and thus 

the theorem is proved. 

 

Theorem 3.  

Let { } { }min ,  ,  max ,a N A Nω ω= = . Then, the essential 

spectrum of 1M  is the following symmetrical set of the 

imaginary axis: 

{ }0 [ , ] [ , ]iA ia ia iA∪ − − ∪ . 

Moreover, the points { } { } { }0 , ,ia iA± ± are eigenvalues of 

infinite multiplicity. 

 

Proof 1. 

According to [25], [27], for operator M  in (15), we can choose 

the numbers 0
i j
s t= =  for , 1, 2,3, 4i j =  and 

5 5
1s t= = . In 

this way, the main symbol ( )L ξɶ  takes the following form: 

( )

1

2

3

1 2 3

1
0 0

1
0 0

1
0 0

0 0 0 0

1 1 1
0 0

L
N

N

λ ω ξ
α

ω λ ξ
α

ξ
λ λ ξ

α

ξ ξ ξ
α α α

 − − 
 
 − −
 
 =  − −
 
 −
 
 
 
 

ɶ  

and thus 

( ) ( ) ( ) ( )2 2 2 2 2 2 2

1 2 32
det L N

λ
ξ λ ξ ξ λ ω ξ

α
 = + + + + 

ɶ .   (21) 

We can see from (21) that if  
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{ } ( ) ( )0 , ,iA ia ia iAλ ∉ ∪ − − ∪   , 

then the operator L  is elliptic in sense of Douglis-Nirenberg. 

Now, let us prove that the boundary condition (12) satisfies 

Lopatinski conditions. 

Indeed, if we write the conditions (12) in form 

0Gu
∂Ω

=ɶ , 

we obtain immediately that 

1 2 3
( , , ,0,0)G n n n=  

and G is a vector row. It can be easily seen that ( )ˆ ,L ξ τɶ  is a 

matrix whose size is 5x5, and that ˆGL  is a non-zero row with 

five components. In other terms, the Lopatinski condition is 

satisfied, which completes the Proof 1. 

 

Proof 2. (construction of an explicit Weyl sequence) 

From Theorem 2 we know that the spectrum of the operator 
1M  belongs to the imaginary axis. Taking into account (21), 

we consider ( ) { }0
, \ 0ia iAλ ∈ ±  and choose a vector 0ξ ≠  

such that 

( ) ( ) ( )2 2 2 2 2 2 2

0 1 2 0 3 0Nλ ξ ξ λ ω ξ+ + + + = . 

Therefore, there exist the vector η  such that 

                                  ( ) 0L ξ η =ɶ .                                  (22) 

Solving (22) with respect to η  , we obtain one of possible 
solutions: 

( ) ( )

( )

0 1 2 0 2 1
1 22 2 2 2

0 0

0 3 3
3 4 52 2 2 2

0 0

 ,  ,

 ,   ,  1 .
N

N N

λ ξ ωξ λ ξ ωξ
η η

α λ ω α λ ω

λ ξ ξ
η η η

λ α λ

− + = = + +


− = = =
 + +

 

We observe that 0 ,  1,2,3,4,5.
i

iη ≠ =  Now, let us choose a 

function ( ) ( )2

0 0 0

1

,  1.
x

C x dxψ ψ∞

≤

∈ Ω =∫  We fix 
0
x ∈Ω  and 

put 

( ) ( )( )
3

2
0 0 , 1,2,...k x k k x x kψ ψ= − =  

We define the Weyl sequence kvɶ  as follows: 

   

( )

( )

( )

3

3

3

,

3

,

4 4

,

5 3

1 1 2 2 3 3

 ,  1,2,3

,  ,             1,2,...

ik xk k
j j k

j j

ik xk

k

ik xk

k

i
v x e j

k x

v x e

i
v x e

k

x x x x k

ξ

ξ

ξ

ψ
η ψ

ξ

η ψ

ψ

ξ ξ ξ ξ

  ∂
= + =   ∂  

 =


= −

 = + + =

            (23) 

Now we will verify that the sequence (23) satisfies  all the 

Weyl conditions (19). 

We observe first that, for the functions (23), the weak 

convergence to zero is evident, due to the weak convergence to 

zero for the functions 
3
,
 ,  

ik x
e k

ξ → ∞ . 

To verify that the norms kvɶ  are separated from zero, it is 

sufficient to prove that at least the norms of one component of 

the field kvɶ  are separated from zero as k → ∞ .  
Let us consider the two summands 

1 11 12

k k kv v v= + , where 

( )

( )

3

3

,

11 1

,

12 1 3

1 1

ik xk

k

ik xk k

v x e

i
v x e

k x

ξ

ξ

ηψ

ψ
η

ξ

 =

 ∂

= ∂

. 

From (23) we can easily see that  

 
2

2 2

2
1 2 2

2
1 ,   ,   ,  k k

k j jL
j jL L

C k C k
x x

ψ ψ
ψ

∂ ∂
= = =

∂ ∂
 

where the constants 0
i

j
C ≠  do not depend on k.  

Therefore, we obtain that  

2

2

1

12 3

1 1

lim lim 0
k k

Lk k
L

v
k x

η ψ
ξ→∞ →∞

∂
= =

∂
. 

However, for the first summand 
11

kv  we have 

22 2

,

11 1 1 1 0.
k

ik xk

k k LL L

v e
ξηψ η ψ η= = = ≠  

Now we will prove the property ( )0 0 .
k

M I vλ− →ɶ  

For example, for the first component we will have 

5
0 1 2

1

1
k

k k v
v v

x
λ ω

α
∂

− − +
∂

= 

3

3

,

0 1 2 1

, 0 1 2

3

1 1 2

1

1
 .

ik x

k

ik x k

e

i
e

k x

ξ

ξ

λ η ωη ξ ψ
α

ψ λ η ωη
ξ ξ α

 = − − + − 
 

 ∂
− + + ∂  

 

Since   

0 1 2 1

1
0λ η ωη ξ

α
− − + = , 

then, 

2

5
0 1 2 2

1

1
0  as  

k
k k

L

v Const
v v k

x k
λ ω

α
∂

− − + ≤ → → ∞
∂

. 

The proof for the other components is analogous. 

For 0λ = , the system (14) transforms into 

5
2

1

5
1

2

5
4

3

3

1
0

1
0

1
0

0

1
div 0               

v
v

x

v
v

x

v
Nv

x

Nv

v

ω
α

ω
α

α

α

∂− + = ∂


∂
+ = ∂

 ∂
+ =

∂
− =

 =



�

. 

It can be easily seen that every vector-function of the form 
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( )0

2 1 3

1 1 1
, ,0, ,  ,  v C

x x N x

ϕ ϕ ϕ
ϕ ϕ

αω αω α
∞ − ∂ ∂ − ∂

= ∈ Ω ∂ ∂ ∂ 
, 

satisfies the last system and thus the value 0λ = is an 

eigenvalue of infinite multiplicity. 

Since the essential spectrum of a linear operator is always a 

closed set, the points { } { },ia iA± ± , belong to it. These limit 

points are also eigenvalues of infinite multiplicity, for 

example, let  , iN Nλ ω= > . Then, the system (14) takes the 

form 

5
1 2

1

5
1 2

2

5
3 4

3

3 4

5

1
0

1
0

1
0

0

1
div 0               

v
iNv v

x

v
v iNv

x

v
iNv Nv

x

Nv iNv

v iNv

ω
α

ω
α

α

α

∂− − + = ∂


∂
− + = ∂

 ∂
− + + =

∂
− − =

 − =



�

. 

Evidently, any function of the type  

( ) ( )( )1 2 1 2 00,0, , , , ,0  ,  x x i x x Cϕ ϕ ϕ ∞∈ , 

satisfies the last system and thus the Proof 2 is concluded. 

We would like to observe as well that the sequence (23), being 

an explicit solution of the system (14), (15) for λ  belonging to 
the essential spectrum, serves as an example of non-uniqueness 

of the solution, due to the arbitrary election of the function 
0

ψ .  

Remark 2. 

Let us denote as 
1

q
M  the differential operator in (14), (15) 

associated to the boundary condition 

0p
∂Ω

= , 

and let us consider the following domain of the operator 
1

q
M : 

( )( ) ( )

( ) ( ) ( )
( ) ( )

3

02 2
1 1 1

2 20
1

2

 :
( ) .

, ,  
q

v L f L
D M W W

v f Wϕ ϕ ϕ

 ∈ Ω ∃ ∈ Ω 
= × Ω × Ω 

 ∇ = ∀ ∈ Ω 

�

�

It can be easily seen that the statement of the Theorem 3 is 

valid for the operator 
1

q
M , either Proof 1 or Proof 2 can be 

applied. Particularly, the Weyl sequence (23) is also valid for 

the operator 
1

q
M . 

IV. THE SOLUTION OF THE PROBLEM FOR THE CASE OF 

COMPRESSIBLE VISCOUS BAROTROPIC ROTATING STRATIFIED 

FLUID 

 

Theorem 4. 

 

The essential spectrum of the operator 2M  is composed of 

three real isolated points 

( ) ( ) ( )
2

2 2

1 1
0, ,

1 2
ess

Mσ
να β να β

  
=  

+ +  
. 

Proof. 

We observe that, according to [25], [27], we can choose 

1 2 3 4 5

1 2 3 4 5

0,  1,

2,  1,

s s s s s

t t t t t

= = = = = −

= = = = =
 

so that the main symbol of the operator 2L M Iλ= −  will be 

expressed as: 

( )

2 2

1 1 2 1 3 1

2 2

1 2 2 2 3 2

2 2

1 3 2 3 3 3

1 2 3

1
0

1
0

1
0

        0              0         0            -      0    

1 1 1
                        0     -   

L

ν ξ νβξ νβξ ξ νβξ ξ ξ
α

νβξ ξ ν ξ νβξ νβξ ξ ξ
α

ξ
νβξ ξ νβξ ξ ν ξ νβξ ξ

α
λ

ξ ξ ξ λ
α α α

 − − − −

 − − − −

=
− − − −



ɶ






 
 
 
 
 
 
 
 



 

We calculate the determinant of the last matrix: 

�( ) ( ) ( )( )
2

62 2

2
det 1 1M I

λν
λ ξ ξ νλα β

α
− = + − , 

and thus we can see that for two points   

( )2

1
0    and    

1
λ λ

να β
= =

+
 

the operator  2L M Iλ= −  is not elliptic in sense of Douglis-

Nirenberg. Now we will show, additionally, that  for the point 

( )2
1

2
λ

να β
=

+
 the condition of Lopatinski is not satisfied. 

The Dirichlet boundary condition can be written in a matrix 

form 

0Gv∗

∂Ω
=   ,     

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

G

 
 =  
 
 

. 

If we denote ( )1 2 3
,  ,  ξ ξ ξ ξ τ= =ɶ  , then  

�( ) ( )

( ) ( )( )

2

2 3
2

2 2

2

det ,

1 1

M Iλ ξ τ

λν
ξ τ νλα β

α

− =

= + + −

ɶ

ɶ

 

and thus the equation �( ) ( )2
det , 0M Iλ ξ τ− =ɶ  for  

( )2

1
0,

1
λ

να β
≠

+
 has one root  iτ ξ= ɶ   of triple multiplicity 

in the upper half of the complex plane.  
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In this way, ( ) ( )3,M iξ τ τ ξ+ = −ɶ ɶ . Since the elements of the 

matrices �2M Iλ−  and G  are homogeneous functions with 

respect to ,ξ τɶ , then it is sufficient to verify the Lopatinski 

condition for unitary vectors ξɶ . Let us choose a local system 
of coordinates so that 

1 2
1 ,  0ξ ξ= = . Then, we have 

( ) ( )3,M iξ τ τ+ = −ɶ           and          �( ) ( )2
M Iλ τ− =  

( )

( )

( )

2

2

2

1
1        0            0

0                 1 0              0 0

                  0 1 0

   0                  0        0                -  0    

1
                 0            

ν β ντ νβτ
α

ν τ

τ
νβτ ν ν β τ

α
λ

τ
α α

− + − −

− +

= − − − +

            0 λ

 
 
 
 
 
 
 
 
 
 

− 
 

 

For the matrix �( )2
M Iλ−  we construct first the adjoint matrix 

�( )2
M Iλ−  (which is composed of algebraic complements of 

the original matrix), then we multiply 
�( )2
M Iλ−  by the 

boundary conditions matrix G, after which we divide 

�( )2
G M Iλ−  by the polynomial ( )3iτ − , and, finally, we 

consider the matrix 
1

M  which is composed of the residues of 

that division. After some elementary transformations of the 

rows of 
1

M  and making the notation 2
1η β
νλα

= − , we 

obtain the matrix 
2

M  from which we withdraw the two last 

zero columns and thus obtain the square 3x3 matrix which we 

denote as 
3

M :    

3
M = ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2

4 3 5 4 0 1 3

0 4 1 0

1 3 0 4 4

i i

i i

i i

η η τ η τ
ν λ τ η τ

η τ η η τ

+ − + − + 
 − − − + − 
 − + + + − 

. 

Evidently, the linear independence of the rows of the matrices 

2 1
,  M M  can be verified by calculating the determinant of the 

matrix 
3

M . We observe that  

( ) ( ) ( ) ( )
32 62

3det 16 1 2M iη η ν λ τ= + + − =

( ) ( ) ( ) ( )
2

3 62

2 2

1 1
16 1 2 .iβ β ν λ τ

να λ να λ
  = + − + − −  
  

 

 As we can see, for  
( ) ( )2 2

1 1
0, ,

1 2
λ

να β να β
≠

+ +
  the rows 

of the matrix  
1

M  are linearly independent. We have already 

proved that the first two points belong to the essential 

spectrum of the operator M. In this way, due to the verification 

of Lopatinski condition, we have that the point 

( )2

1

2
λ

να β
=

+
, also belongs to the essential spectrum of the 

operator 2M  and thus 

( ) ( ) ( )
2

2 2

1 1
0, ,

1 2
ess

Mσ
να β να β

  
=  

+ +  
 

which concludes the proof of the Theorem 4. 

 

Theorem 5.  

The essential spectrum of the operator 3M  is composed of 

three real isolated points 

( ) ( )
3

2 2

1 1
0, ,

1
ess

Mσ
να β να β

  
=  

+  
. 

Proof. 

For the points 
( )2

1
0,  =

1
λ λ

να β
=

+
, just like in the case of 

the operator 2M , we have that the operator  3L M Iλ= −  is 

not elliptic in sense of Douglis-Nirenberg and thus these two 

points belong to the essential spectrum. We shall prove now 

that for the point 
2

1
λ

να β
=  the Lopatinski condition is not 

satisfied. Let x∈ ∂Ω . Since the system (14), (18) and the 
boundary condition (17) are invariants with respect to 

translations of origin and rotations of the coordinate axis, we 

may consider them, without loss of generality, in a local 

system of coordinates with the origin in x. In this way, we have 

1 2 3
0,  1η η η= = = , 

and the boundary condition (17) takes the following form in a 

local system of coordinates on a rectilinear portion of the 

boundary ′∂Ω : 

            

( )

31

3 1

32

3 2

3
5

3

0

0

1
1 div 2 0 .

vv

x x

vv

x x

v
v v

x

ν

ν

ν β ν
α

′∂Ω

′∂Ω

′∂Ω

 ∂∂
+ = 

∂ ∂ 

 ∂∂
+ = 

∂ ∂ 

∂
− + − =

∂
�

                  (24) 

For the boundary condition (17) we have the following 

characteristic matrix ( ),G ξ τɶ : 

( ) ( ) ( )

1

2

1 2 3

0 0 0

0 0 0

1
1 1 1 0

ντ νξ

ντ νξ

ν β ξ ν β ξ ν β ξ
α

 
 
 
 
 
 

− − − + 
 

. 

As we have shown in the proof of Theorem 4, it is sufficient to 
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verify the Lopatinski condition for unitary vectors ξɶ , i.e. 

1 2
1,  0ξ ξ= = . In this way,  

( )

( )

0 1 0 0

0 0 0 0 .

1
1 0 1 0

G

τ

τ τ

β β τ
να

 
 
 
 =  
 

− − + 
 

We proceed in an analogous way as we did in the proof of the 

Theorem 4. 

For the matrix �( )3
M Iλ−  we construct first the adjoint matrix 

�( )3
M Iλ−  (which is composed of algebraic complements of 

the original matrix), then we multiply 
�( )3
M Iλ−  by the 

boundary conditions matrix G, after which we divide 

�( )3
G M Iλ−  by the polynomial ( )3iτ − , and, finally, we 

consider the matrix 
4

M  which is composed of the residues of 

that division. After some elementary transformations of the 

rows of 
4

M  and making the notation 2
1η β
νλα

= − , we 

obtain the matrix 
5

M  from which we withdraw the two last 

zero columns and thus obtain the square 3x3 matrix which we 

denote as 
6

M :   

 
6

M = ( )
( )( ) ( )( )

( )( )
( )( ) ( )( )

2

2 5 2 0 2 3 2

2 0 2 1 0

2 3 2 0 2 2

i i i i

i i i

i i i i

η η τ η η τ
ν λ τ η τ

η η τ η η τ

− + − + − − 
 

=− − − + − 
 + + − − + − − 

 

. 

We observe that 

( ) ( ) ( ) ( )
3 62

6det 64 1 2M i iν λ η η η τ= − + + − , 

from which it follows that, for 0,  -1,  - 2η ≠ , the Lopatinski 

condition is fulfilled.   

For 0η =  we have 
2

1
λ

να β
=  and thus 

( )32

1
ess

Mλ σ
να β

= ∈ . 

For 1η = −  we have 
( )2

1

1
λ

να β
=

+
 for which the operator 

3M Iλ−  is not elliptic in sense of Douglis-Nirenberg and thus 

( ) ( )32

1

1
ess

Mλ σ
να β

= ∈
+

. 

Finally, for 2η = −  we have 
( )2

1

2
λ

να β
=

+
. For that value 

of λ , we calculate the matrix 
4

M : 

( )
( )

( ) ( ) ( )

( )

( ) ( ) ( )

4 2

2
                                 

2

4
4 8 0 4 8

0 2 0 0 .

4
4 4 0 4 4

v i
M

i i i i i

i i

i i i i i

τ
α β

τ τ τ
λα

τ

τ τ τ
λα

−
= − ×

+

− − + − − − − − 
 
 × −
 
 
 − − − − − − 
 

Now, we multiply the third column by i, then sum it with the 

first column, withdraw the first zero column an denote the 

resulting 3x3 square matrix as 
7

M . We observe that 

( )
( )

64

7 25

64
det

2

i i
M

ν τ

α β

− −
=

+
, 

and thus the Lopatinski condition is fulfilled for  

( )2

1

2
λ

να β
=

+
. 

Summing up the results of all the calculations for matrices  

4
M  - 

7
M , and recalling that for 0λ =  the operator 3M Iλ−  

is not elliptic in sense of Douglis-Nirenberg, we have that 

( ) ( )
3

2 2

1 1
0, ,

1
ess

Mσ
να β να β

  
=  

+  
, 

and thus the Theorem 5 is proved. 

Theorem 6.  

Let A Nω= + . Then, the spectrum of operator 2M  is 

symmetrical with respect to the real axis, and all the 

eigenvalues of operator 
2M  are in the following sector of the 

complex plane: 

( )
1 2

Re
:  Re ,  ImZ C A

A

λ
λ λ νµ λ

να β
 

= ∈ ≥ ≤ + 
 

, 

where 
1

µ is the smallest eigenvalue of the operator ( )−∆  in 

Ω  for zero boundary Dirichlet condition. 

Remark 3. 

The value 
1

µ  is estimated as follows: 2

1
dµ −≥ , where d  is the 

width of the 3-dimensional strip region which includes the 

domain Ω . In that case, all the eigenvalues of the operator 
2M  are situated at the right side of the straight line 

2Re dλ ν −= . 

 

Proof. 

Let us denote  ( )1 2 3 4
, , ,v v v v v=ɶ      and take notations for the 

matrices  ,  
N

B Bω  from (20). 
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Then, the system  ( ){ }2

5, 0M I v vλ− =ɶ   can be written in the 

form 

     
5

5

1
div 0

1
div 0

N
v B v B v v v v

v v

ωλ ν νβ
α

λ
α

− + + − ∆ − + ∇ =

− + =


� �
ɶ ɶ ɶ

�
.            (25) 

We apply the complex-conjugation to the original system of 
2 0M Iλ− = : 

5

5

1
div 0

1
div 0

N
v B v B v v v v

v v

ωλ ν νβ
α

λ
α

− + + − ∆ − + ∇ =

− + =


� �
ɶ ɶ ɶ

�
 

from which we can see that, if λ  is an eigenvalue of 2M , then 

λ  is also an eigenvalue of operator 2M , and thus the 

spectrum is symmetrical with respect to the real axis. 

Now we multiply the system (25) by { }5,v vɶ  and then integrate 

by parts in Ω . In this way, we obtain the following equations: 

( ) ( )

( )

( )

3
2 2

1

2

5

2

5 5

, ,

1
div ,div 0

1
div , 0

N k

k

v B v v B v v v

v v v

v v v

ωλ ν

νβ
α

λ
α

=

− + + + ∇ +

+ − =

− + =

∑ɶ ɶ ɶ ɶ ɶ

� �

�

 

   We sum up these two equations 

( ) ( ) ( )

( ) ( )

3
2 22

5

1

2

5 5

, ,

1
div div , ,div 0

N k

k

v v B v v B v v v

v v v v v

ωλ ν

νβ
α

=

− + + + + ∇ +

+ + − =  

∑ɶ ɶ ɶ ɶ ɶ

� � �
 

and then separate the real and the imaginary parts, keeping in 

mind the fact that for a skew-symmetric matrix B the 

expression ( ),Bv vɶ ɶ  is imaginary. 

3
2 2

1

2 2

5

div

Re 0
k

k

v v

v v

ν νβ
λ =

∇ +
= >

+

∑ �

ɶ
, 

( ) ( ) ( ) ( )5 5

22

5

1
, , div , ,div

Im .
N

B v v B v v v v v v

i
v v

ω αλ
+ + −  

= −
+

� �
ɶ ɶ ɶ ɶ

ɶ
 

   We estimate  

2

5

22

5

2

22

5 2

22

5

2
div

Im

div

          .

A v v v

v v

v
A v A v

A

v v

αλ

α

+
≤ ≤

+

+ +
≤

+

�
ɶ

ɶ

�

ɶ

ɶ

 

   Here we used the inequalities 

( )
2 2 2

2
2

, ,  

2

L L L
f g f g

a a
b A b A

AA

≤

≤ +
. 

Since  

3
2 2

2 2
1

2 22 22

5 5

1 1
div

Re
k

k

v v
A A

A v v v v

λ α β α
να β

=

∇
= +

+ +

∑ �

ɶ ɶ
 

and 

2

2

22

5

1
div

Im

v
AA

v v

αλ ≤ +
+

�

ɶ
, 

then we finally have 

( )
2

Re
Im A

A

λ
λ

να β
≤ + . 

Let us prove now that 
1

Reλ νµ≥ . We shall suppose the 

contrary. In other terms, we suppose that there exists λ  such 
that 

1
Reλ νµ<  and there exists the vector ( )1 1 1

5,v v v= ɶ  such 

that 

1 1 1 1 1 1

5

1 1

5

1

1
div 0

1
div 0

0

N
v B v B v v v v

v v

v

ωλ ν νβ
α

λ
α

∂Ω

− + + − ∆ − + ∇ =

− + =

=

� �
ɶ ɶ ɶ

�

ɶ

. 

Let us consider the following auxiliary problem; 

                        

1

5    ,   

0.

v x

n

ϕ λα

ϕ

∂Ω

∆ = − ∈ Ω

∂
=

∂
�

                             (26) 

Since 1 1

5
divv vλα=
�

  and  1 0v
∂Ω

=
�

,  then we have 

( )1 1 1

5 div  0v x dx v dx v n dsλα
Ω Ω ∂Ω

= = ⋅ =∫ ∫ ∫
� � �

. 

In that way, the necessary condition for the solvability of the 

problem (26) is satisfied and there exists a solution 

( )xϕ which is defined within an additive constant. 

Now, we consider one more auxiliary problem; 
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2 2 2 2 2

5

2

2

div 0

0

N N
v B v B v v v B B

v

v

ω ωλ ν ϕ ϕ

∂Ω

− + + − ∆ + ∇ = ∇ + ∇

=

=

�
ɶ ɶ ɶ

�

ɶ

 .     (27) 

For the problem (27) it is known (see [26]) that the spectrum 

of the homogeneous problem is situated to the right of the 

straight line 
1

Reλ νµ= , therefore there exists a unique 

solution of the problem (27). Now, let us put 

1 2

1 2 1

5 5 5

 ,

1
div  .

u v v

u v v v

ϕ

λϕ ν ϕ νβ
α

= + + ∇

= + + + ∆ −

ɶ ɶ ɶ

�  

Then, we shall have 

                   

5 0

div 0

0

u Su u u

u

u

λ ν

∂Ω

− + − ∆ + ∇ =

=

=

�
ɶ ɶ

�

ɶ

.                           (28) 

After multiplying the first line in (28) by uɶ  and integrating by 

parts in Ω , we obtain 

( )
3

2 2

1

, 0
k

k

u Su u uλ ν
=

− + + ∇ =∑ɶ ɶ ɶ . 

From the last equation we have 
3

2

1

2
Re

k

k

u

u

ν
λ =

 
∇ 

 =
∑
ɶ

. 

Finally, using the Friedrichs inequality, we obtain 
23

2

11

1
k

k

u u
µ =

 
≤ ∇  

 
∑ɶ . 

In this way, 
1

Reλ νµ≥ , which contradicts the assumption of 

1
Reλ νµ< . We conclude therefore that for all the eigenvalues 

of the operator 2M  the following property is valid:   

1
Reλ νµ≥ , 

and thus the Theorem 6 is proved. 

 

Theorem 7.  

The spectrum of operator 3M  is symmetrical with respect to 

the real axis, and all the eigenvalues of operator 3M  are in the 

following sector of the complex plane: 

( )Re
:  Re 0,  Im

2
Z C A

A

λ
λ λ λ

να β
= ∈ ≥ ≤ +

  
 
  

. 

The proof of the Theorem 7 is analogous to the proof of the 

Theorem 6. Particularly, just like in the proof of the previous 

theorem, we obtain that 
3

2 2

1

2 2

5

div

Re 0
k

k

v v

v v

ν νβ
λ =

∇ +
= ≥

+

∑ �

ɶ
. 

We only would like to observe that, we cannot exclude the 

case of equality in the last relation, since 0λ =  is an 

eigenvalue of the operator 3M  with the corresponding 

eigenfunction ( )1 2
, , 0, 0v v v=ɶ , where 

1 2
,v v  are arbitrary 

constants.  

 

V. CONCLUSION 

 

For the inviscid case of compressible rotating stratified fluid, 

as we have seen, the essential spectrum of inner oscillations is 

the symmetrical bounded set of the imaginary axis 

{ }0 [ , ] [ , ]iA ia ia iA∪ − − ∪ . 

Comparing these results with the compressible viscous case, 

we can conclude that, just as in case of the explicit 

representations of Cauchy problems, where, in most cases, the 

inviscid solution cannot be obtained from viscous solutions as 

a limit for vanishing viscosity parameter; the essential 

spectrum of normal oscillations for inviscid stratified fluid 

cannot be obtained from the essential spectrum for viscous 

stratified fluid by putting the viscosity parameters equal to 

zero. Therefore, the considered problems and the results of 

Theorems 3, 4 and 5, are remarkable and interesting due to the 

special property that, for the viscous fluid, (for example, for 

the operator 2M ), the two points of the essential spectrum  

( ) ( )2 2

1 1
,

1 2να β να β+ +
 

move to infinity for , 0ν β → ; while the essential spectrum of 

the inviscid fluid contains an interval of the imaginary axis. 

Additionally, as we can see, the results of Theorem 3 obtained 

for the inviscid fluid ,  correspond to the statement of Theorem 

7 if we put Re 0λ = :  ( )Re 0,  Im Aλ λ= ≤ . 

Finally, we would like to observe that, if we put, for example, 

0N =  in (2), then, according to theorem 3, the essential 

spectrum will be the interval of the imaginary axis [ ],i iω ω− , 

the result which was proved for rotating (non-stratified) 

compressible fluid in [27].  
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